In this document, we explore the incidence, prevalence, and classification of cerebrovascular disorders, focusing on stroke in Canada. **Incidence & Prevalence**

- **Incidence**: 50,000/year
- **Prevalence**: 300,000 living with effects of stroke
- **Gender**: Male = Female
- **Age**: Mean age at onset 73 and 75 respectively
- **Disability**: Leading cause of adult disability
- **Mortality**: 3rd leading cause of death

Classification of Stroke

Ischemic (80%)
- Atherosclerotic (20-30%)
- Cardioembolic (20-30%)
- Small Vessel Disease (20-30%)
- Other (e.g., dissection, hypercoagulable state, vasculitis)

Hemorrhagic (20%)
- Subarachnoid Hemorrhage (60%)
 - Intracranial aneurysm
- Intracerebral and/or Intraventricular hemorrhage (40%)
 - Hypertension
 - Congophilic/amyloid angiopathy
 - Arteriovenous Malformation
Cerebrovascular Anatomy & Physiology: Clinical Syndromes

Large Vessel

MCA territory
- Dominant – Aphasia and contralateral hemiparesis (+/- hemianopsia)
- Non-Dominant – Neglect and contralateral hemiparesis (+/- hemianopsia)

ACA territory
- Unilateral – Contralateral leg weakness
- Bilateral – Behaviour changes +/- leg weakness

PCA territory
- Dominant – contralateral hemianopsia
- Bilateral – cortical blindness (+/- short term memory loss, aphasia)

Small Vessel

Lacunar Syndromes
- Involve anterior and posterior territories
- Commonly in deep structures (Basal Ganglia, Internal Capsule, Brainstem, Cerebellum)
- Clinical Presentation:
 - Ataxic hemiparesis
 - Clumsy-Hand dysarthria
 - Pure Motor
 - Pure Sensory
 - Mixed Sensorimotor
Ischemic stroke and Transient ischemic attack (TIA)

Definitions
- **TIA**: temporary interruption in blood supply to retina (amaurosis fugax) or brain
- Sudden onset, sudden offset, duration usually less than 60 minutes
- If symptoms last more than 24 hours then it is a stroke

Signs and Symptoms
- Sudden
- Weakness
- Trouble speaking
- Vision problems
- Headache
- Dizziness

Pathophysiology
- Atherosclerosis
 - Atheroembolic
 - Thromboembolic
 - Complete occlusion from atherosclerosis
- Cardioembolic
- Small vessel disease
Non-Modifiable Risk Factors

- Age
- Sex
- Family history
- Race
- Ethnicity

Common Causes of Stroke

HEMORRHAGIC STROKE 20% ISCHEMIC STROKE 80%

- Intracerebral Hemorrhage
- Subarachnoid Hemorrhage
- Intracranial Aneurysm

- Migraine
- Cardiovascular Disease
- Heart disease
- Diabetic retinopathy
- Hypertension
- Hypothyroidism
- Anemia
- HIV

- Cerebral Atheroendaritis
- Aneurysms
- Malignant Strokes
- Thrombolytic therapy
- Hypertension

- Thrombosis
- Hypertension
- Hypercholesterolemia
- Hypothyroidism
- Narrowing of the arteries
- Strokes
- Aneurysms
- Heart disease
- Diabetes
- Stroke prevention
- Anticoagulant therapy
- Aspirin
- Betablockers
- Calcium channel blockers
- Digitalis

Risk Factors for Stroke
Primary Stroke Prevention
- Lifestyle Management
- See Table 2

Risk Factors for Stroke
Secondary Stroke Prevention (Modifiable Risk Factors)
- See Table 3
- Pharmacological Intervention:
 - Antiplatelet for all patients (unless cardioembolic source – then anticoagulant used instead)
 - Treatments for risk factors (eg. diabetes, hypertension)

Secondary Stroke Prevention
Carotid Revascularization
1. Carotid endarterectomy
2. Carotid angioplasty/stent
- Carotid Revascularization recommended within 14 days of TIA or non-disabling stroke (for appropriate patients)
- Carotid Revascularization may be contraindicated in the acute phase of disabling stroke secondary to the risk of reperfusion hemorrhage
Secondary Stroke Prevention

Carotid Revascularization
• Continued controversy in asymptomatic disease
• NASCET study
 – Proved benefit of carotid endarterectomy (symptomatic, moderate to severe disease)
• CREST study (compare endarterectomy with stent)
 – Older patients: surgical
 – Younger patients: angioplasty/stent

Carotid Revascularization

Carotid Endarterectomy
• Surgical exposure of artery in neck, plaque removed
• Usually GA
• Older patient, surgically accessible narrowing, ok if calcified disease
• Post operative care
 – See Table 4

Carotid Revascularization

Carotid Angioplasty/Stent
• Younger patient, recurrent disease, stenosis post radiation
• Local anaesthesia and sedation
• Post procedure care
 – See Figure 1 (Cerebral Angiography)
 – See Table 4 (post Carotid Intervention)
• Pharmacology
 – dual antiplatelet agents (clopidigrel and ASA)
Hyperacute Stroke

“Time is Brain”
- Promote public awareness to call 911 (initiates stroke protocols)
- Rapid assessment, diagnosis, investigation and treatment
- Patients eligible for IV tPA should have door-to-needle time of less than 60 minutes

Hyperacute Stroke – IV tPA

Patient Selection
- Within 4.5 hours of symptom onset
- Symptoms are not mild or rapidly resolving
- Contraindications to thrombolytics (eg. INR > 1.6, recent stroke, or recent MI)
Hyperacute Stroke – IV tPA

Administration and Monitoring

- Total dose of 0.9mg/kg (max 90 mg)
 - 10% bolus given by physician and remaining 90% given as infusion over 1 hour
- See Table 5 for nursing assessment and monitoring

Hyperacute Stroke: Intra-arterial treatments

Intra-arterial thrombolysis and/or intra-arterial thrombus extraction

- Role for this treatment is unclear
- Requires stroke centre with immediate access to cerebral angiography
- The intra-arterial approach should not delay IV tPA for those patients who are candidates for IV tPA
- See Table 5 (IV tPA) and/or Figure 1 (cerebral angiography) for the care of patients after these interventions

Acute Stroke

Goal: Minimize the effects of the Stroke

- Stroke Unit (evidence of better outcomes)
- Standardized Stroke Scale for monitoring (NIHSS or CNS)
- See Table 6 and Table 7
Acute Stroke

Surgical Treatment

Decompressive Craniectomy

1. Cerebellar Stroke
 – Suboccipital craniectomy to relieve brainstem compression

2. Malignant MCA Syndrome
 – Decompressive craniectomy for large strokes at risk of swelling and herniation
 – Evidence that early surgical intervention improves mortality and functional outcome

CNA Neuroscience Nursing Course: Cerebrovascular Disorders

Breeda O’Farrell RN(EC), MScN, CNN(C)
Nurse Practitioner Neurology
University Hospital, London Health Science Centre
London, ON

Deb Bisnaire RN(EC), MHSc
Nurse Practitioner Neurosurgery
University Hospital, London Health Science Centre
London, ON
Hemorrhagic Stroke (20%)

Classification of Hemorrhagic Stroke

Subarachnoid Hemorrhage (SAH) 60%
- Aneurysm 85%
- Other 15-20%
 - Perimesencephalic 10%
 - AVMs, coagulopathies, tumors, cocaine

Intracerebral Hemorrhage (ICH) and/or Intraventricular Hemorrhage (IVH) (40%)
- Hypertension
- Congophilic/amyloid angiopathy
- Arteriovenous Malformation
 - Note bleeding may extend from one space into another, ie deep ICH \(\rightarrow\) IVH

Common Causes of Stroke

Hemorrhagic Stroke 20% Ischemic Stroke 80%

Intracranial Hemorrhage (Multiple etiologies)
Subarachnoid Hemorrhage
Subdural Hemorrhage
Epidural Hemorrhage
SAH
AVM
Hypertension
Congophilic/amyloid
angiopathy
Arteriovenous Malformation

SAH

Anatomy and common sites of aneurysms
- Bleeding into subarachnoid space
- Skull
 - Epidural space
 - Dura mater
- Arachnoid
 - Subarachnoid space
 - (circle of willis)
- Pia mater
- Brain
SAH

Traumatic SAH vs aneurysmal SAH

SAH

Aneurysmal SAH vs perimesencephalic hemorrhage

SAH

Diagnosis of aneurysmal SAH

- History
- CT head
 - Positive in 95% within 24 hours of bleed
- If in doubt...lumbar puncture
 - Persisting elevated red cell count
 - Supernatant is xanthochromic
Cerebral aneurysm

- It’s a brain thing
- At arterial bifurcations
 - Congenital weakness, flow related
 - Develop over time, thin walled
- Family history??
- Presentation
 - Incidental
 - Rupture
 - Mass effect

SAH

Aneurysmal SAH: History, incidence, prognosis

- Sudden onset worst headache of life
- +/- LOC, vomiting, focal deficit, neck stiffness, photophobia
- Incidence 10/100,000/year
- About 10-15% die outright
- Overall 50% dead/disabled at 6 months
- It’s a bad thing.....

SAH grading systems

- Clinical grade
 - WFNS (Table 8)
 - Hunt and Hess (Table 9)
 - Influences decision to treat
 - Prognostic of outcome
- Radiologic Grade
 - Fisher Scale (Table 10)
 - Volume of hemorrhage
 - May help predict risk of cerebral vasospasm
SAH

CT information

- Volume of hemorrhage (Fisher Scale)
- Location of blood
- Presence of intracerebral hemorrhage (clot)
- Ventricular hemorrhage
- May see aneurysm itself
SAH

Source of SAH: CT angiography

SAH

Early Management

ABC’s
- ABC’s
- Airway: smooth intubation
- Breathing: normal pO2, pCO2
- Circulation: BP (less than 160 systolic), arrhythmias

Neurologic intervention
- Treat hydrocephalus
- Treat elevated ICP
- Find source of hemorrhage: plan treatment to prevent rebleed

SAH

Cerebral angiography
Ruptured intracranial aneurysm: m&m

- See Tables 7 and 11
- Effects of initial hemorrhage
 - Surgery, coils will not impact (exception ICH, IVH)
- Potential to rebleed
- Hydrocephalus
- Vasospasm
- Disorders of salt/water balance

m&m: rebleed

- **Sudden** deterioration
- Highest risk in first 24 hours
- Dx: CT
- Treatment/prevention
 - SAH routine, secure (clip/coil), BP target low
 - If bleeds...ABCs
- Drugs
 - Bowel, analgesics, sedatives, avoid blood thinners
 - Antihypertensives...labetalol, hydralazine

Prevention of rebleed: clip vs coil

- Aneurysm factors
- Brain factors: ICH, swelling
- Accessibility factors
- Clinician experience/preference
- Durability vs safety
Prevention of rebleed: clip vs coil

Coil
• endovascular, GA, long term followup required
Clip
• surgical, GA, “permanent” fix
(See Table 12)
• ISAT (Lancet October 2002)
– Surgical 30% dependent or dead
– Endovascular 23% dependent or dead

Endovascular coiling

Surgical clipping
SAH

m&m: hydrocephalus

- Population at risk
 - IVH, large SAH
- Decreased LOC, “failure to thrive”
- Time frame:
 - Acute (15-80%) & urgent, delayed (8-48%)
- Dx: CT
- Treatment/prevention
 - EVD, lumbar puncture, VP shunt
 - Rarely Intraventricular tpa for severe IVH

SAH

Normal ventricles vs hydrocephalus

SAH

m&m: hydrocephalus EVD nursing care

- See Table 13
- Complications
 - Brain hemorrhage r/t catheter
 - Infection
 - Aneurysmal rebleed
 - Intracranial hypotension
SAH

m&m: cerebral vasospasm (delayed cerebral ischemia)

- Large volume SAH, younger
- Focal deficit, can be LOC, behavior change
- Day 4-14, peak 7-11 days
- Dx: TCD, CTA, Cerebral Angiography
- Treatment/prevention
 - Nimodipine, statins
 - Metabolic (O2, glucose, Mg+)
 - Maintain blood flow to brain (HHH, hold antihypertensives)
 - Endovascular: IA milrinone, angioplasty

SAH

Normal vessels vs cerebral vasospasm

m&m: Salt/water imbalance

- Global decline
- Time frame: anytime
- Dx: simultaneous urine and se osmo and lytes
- Etiology:
 - Cerebral salt wasting (linked to spasm)
 - SIADH
SAH

m&m: salt/water imbalance: etiologies

• Cerebral salt wasting
 – Brain tells kidneys to secrete Na, fluid follows
 – Prevention/treatment
 • Hypertonic solutions, salt, fludrocortisone

• SIADH
 – Brain tells kidneys to hold onto water, brain waterlogged (water is problem), Na is diluted
 – Prevention/treatment
 • Fluid restriction

Unruptured intracranial aneurysms

Clinical management

• ISUOA (2003)
 • Anterior circulation aneurysms
 – <7 mm…no bleeding,
 – 7-12 mm 2.6%,
 – 13-24mm 14.5%
 – >25mm 40%
 • Posterior circulation aneurysms
 – <7mm 2.7%
 – 7-12mm 14.5%
 – 13-24mm 18.5%
 – >25mm 50%

• Multiple aneurysms with previously ruptured aneurysms
 • Higher risk of second aneurysm rupturing

• Surgical m&m…15%

• Guidelines for practice

SAH

Drugs in SAH, cerebral aneurysms

• *Nimodipine
• Sedatives
• Analgesics
• Albumin, pentaspan
• Inotropes
• Antihypertensives
• antiplatelets
SAH

Themes in management
- Crisis
- Uncertainty
- Grief/Loss

Intracerebral Hemorrhage/Intraventricular Hemorrhage

Acute Management
- ABC’s
- Blood Pressure
- Reversal of coagulopathy (see Table 14)
- ICP (EVD, evacuation of hematoma)
- See Tables 7 and 15 for additional nursing management

Etiology

1. Hypertension
 - Most common, varied degree of severity
 - Basal ganglia, pons, cerebellum
 - Vessels stiffen and rupture
 - Blood extends along white matter tracts
 - Edema, extension of bleeding, gradual resolution
Etiology

Intracerebral Hemorrhage/Intraventricular Hemorrhage

2. Congophilic (amyloid) angiopathy
 - Amyloid (protein) deposit in media and adventitia and weakens vessel
 - Over age 60
 - Lobar hemorrhage often with subarachnoid extension
 - Prone to recurrent hemorrhage in different locations
 - Avoid anticoagulants

3. Arteriovenous Malformations
 - Classification
 - Arteriovenous malformation (AVM)
 - May have associated aneurysms
 - Cavernous angioma/cavernoma
 - von Hippel Lindau
 - Developmental venous anomaly (DVA)
 - Often in association with cavernomas
 - Arteriovenous fistulas
 - Acquired post venous thrombosis, injury

 - Congenital (0.5% of population)
 - Abnormal connection between arteries and veins
 - No capillary bed
 - high flow
 - Feeding arteries, draining veins, “nidus”
 - May be associated aneurysms
Arteriovenous Malformations

- Presentation
 - Hemorrhage (50%)
 - Seizure (25-50%)
 - Headache (12-35%)
 - Progressive neurologic deficit (10-25%)

Arteriovenous Malformations

- Natural History:
 - Risk of rupture 1.5-3% per year
 - Risk of recurrent rupture, highest in first months after bleed
 - Mortality 20-30%
 - Mortality 10-15%

- Higher risk features
 - Associated aneurysm, venous outflow narrowing
Intracerebral Hemorrhage/Intraventricular Hemorrhage

Arteriovenous Malformations: Treatment Options

- Conservative
- Embolization (often multiple)
- Surgical excision
- Radiosurgery (less than 3 cm)
- *Combination therapies common (see Table 16)

Arteriovenous Malformations: Embolization

- Neuroradiology, usually GA, 3-5 hours
- Post procedure monitoring:
 - Cerebral angiography (Figure 1)
 - Stroke (ICH, progressive thrombosis with ischemia)
- Staged, multiple
- Occasionally used to ameliorate symptoms (bruit, headache) without definitive cure

Arteriovenous Malformations: Surgical Excision

- Post-op Care
 - Craniotomy
 - Often lengthy OR time
 - Reperfusion syndrome:
 - "clot waiting to happen"
 - Tight blood pressure control
 - May elect to keep sedated x24-48 hours

Post-op Care
- Craniotomy
 - Often lengthy OR time
- Reperfusion syndrome:
 - "clot waiting to happen"
 - Tight blood pressure control
 - May elect to keep sedated x24-48 hours
Arteriovenous Malformations: Radiosurgery
- Specialized centre (with Gamma knife or Linear Accelerator)
- "nidus" under 3 cm.
- Delay in occlusion (2-3 years)
- Single treatment
- Need follow up imaging
- Acute and delayed complications
 - Bleed, edema, seizures

Cavernous Angioma/Cavernoma
- Collection of tightly packed venous channels
- Occult on angiography
- 0.1 - 0.5% of population
- Presentation:
 - Seizure, hemorrhage, headache, progressive deficit
- Treatment
 - Conservative
 - Surgery if multiple symptoms and accessible
Intracerebral Hemorrhage/Intraventricular Hemorrhage

Other Etiologies

4. Coagulopathies
 - acquired
 • Antiplatelets, anticoagulants
 • Thrombocytopenia, ITP
 - Congenital
 • Factor deficiencies

5. Vasculitis
 - Inflammation of blood vessels
 a. Intracranial eg. Cerebral vasculitis
 • Headache, seizures, behaviour change, or focal deficit
 • May result in ischemic or hemorrhagic stroke
 • Inflammatory markers, CSF analysis, cerebral angiography and/or brain and blood vessel biopsy may help diagnosis
 • Treatment includes immunosuppressant therapy (steroids, cyclophosphamide)
 b. Extracranial eg. Temporal arteritis
 • Vision loss, headache/temporal tenderness
 • May result in blindness
 • ESR, temporal artery biopsy
 • Treat with steroids

6. Illicit drug use
 - Cocaine

7. Cerebral venous thrombosis
Cerebral venous thrombosis

• Risk factors
 – Acquired
 • OCP, pregnancy, obesity, parameningeal infections (otitis media)
 – Genetic
 • Hypercoagulable syndromes
• Incidence 0.5-1% of strokes

Symptoms:
• Headache, visual obscurations, seizures, focal deficit
• May result in ischemic stroke (often with hemorrhagic transformation)
• Edema from venous engorgement → IICP, papilledema
• If left untreated papilledema → blindness (pseudotumor)

Anticoagulation
• If worsens despite anticoagulation → interventional angioplasty, stent or thrombectomy

Treatment to prevent vision loss:
– Lumboperitoneal or ventriculoperitoneal shunt
– Diamox to reduce CSF production (temporize)
– Optic nerve sheath fenestration
Primary and secondary prevention

- Blood pressure control
- Limit alcohol consumption
- Smoking cessation
- Etiology specific
 - Treat structural lesion
 - Reverse coagulopathy

Classification of Stroke

<table>
<thead>
<tr>
<th>Ischemic (80%)</th>
<th>Hemorrhagic (20%)</th>
</tr>
</thead>
</table>
| • Atherosclerotic (20-30%) | • Subarachnoid Hemorrhage (60%)
| • Cardiembolic (20-30%) | - Intracranial aneurysm
| • Small Vessel Disease (20-30%) | - Intracerebral and/or Intraventricular hemorrhage (40%)
| • Other (eg. dissection, hypercoagulable state, vasculitis) | - Hypertension
| | - Congophilic/amyloid angiopathy
| | - Arteriovenous Malformation

- Hypertension
- Congophilic/amyloid angiopathy
- Arteriovenous Malformation